

What are the requirements for polygon similarity?

What are the requirements for polygon similarity?

• All corresponding Z's are \cong

What are the requirements for polygon similarity?

- All corresponding Z's are \cong
- All corresponding sides are proportional

- All corresponding Z's are \cong
- All corresponding sides are proportional

All corresponding Z's are ≅ 655?
All corresponding sides are proportional
With the set away
Can we get away

- All corresponding Z's are \cong
- All corresponding sides are proportional

- All corresponding Z's are \cong ... is this sufficient?
- All corresponding sides are proportional

- All corresponding Z's are \cong ...]s this sufficient?
- All corresponding sides are proportional

Yup!

- All corresponding Z's are \cong ... is this sufficient?
- All corresponding sides are proportional

Yup! Do we need to know all $3 \angle$ pairs are \cong ?

- All corresponding Z's are \cong ... is this sufficient?
- All corresponding sides are proportional

Yup! Do we need to know all $3 \angle 2$ pairs are \cong ? ... what about thm 4-1? Postulate 8-1: Angle-Angle Similarity (AA~)

Postulate 8-1: Angle-Angle Similarity (AA~)

 $|f 2 \angle s of 1 \Delta are \cong 2 \angle s of another \Delta,$ then the $\Delta s are \sim .$

 $\Delta TRS \sim \Delta PLM$

Theorem 8-1: Side-Angle-Side Similarity (SAS~)

 $\begin{aligned} &|f \text{ an } ∠ \text{ of } 1 \Delta \text{ is } \cong \text{ an } ∠ \text{ of another } \Delta, \underline{\text{ and}} \\ & \text{the including sides are proportional,} \\ & \text{then the } \Delta \text{'s are } \sim. \\ & A \end{aligned}$

Theorem 8-1: Side-Angle-Side Similarity (SAS~)

If an ∠ of 1 Δ is \cong an ∠ of another Δ , and the including sides are proportional, then the Δ 's are ~.

then $\triangle ABC \sim \triangle QRS$

Theorem 8-2: Side-Side-Side Similarity (SSS~)

If the corresponding sides of 2 Δ 's are proportional, then the Δ 's are \sim .

Theorem 8-2: Side-Side-Side Similarity (SSS~)

If the corresponding sides of 2 Δ 's are proportional, then the Δ 's are \sim .

Triangle Similarity Examples

Explain why Δ 's must be ~. Write a similarity statement.

Triangle Similarity Examples - Indirect Measurement Find h. (not drawn to scale)

L8-3 Homework Problems

Pg 435 #1-19, 22-28, 30-39, 53-57 Checkpoint Quiz 1, Pg 429 #1-10